Crystal structures and proposed structural/functional classification of three protozoan proteins from the isochorismatase superfamily.

نویسندگان

  • Jonathan Caruthers
  • Frank Zucker
  • Elizabeth Worthey
  • Peter J Myler
  • Fred Buckner
  • Wes Van Voorhuis
  • Chris Mehlin
  • Erica Boni
  • Tiffany Feist
  • Joseph Luft
  • Stacey Gulde
  • Angela Lauricella
  • Oleksandr Kaluzhniy
  • Lori Anderson
  • Isolde Le Trong
  • Margaret A Holmes
  • Thomas Earnest
  • Michael Soltis
  • Keith O Hodgson
  • Wim G J Hol
  • Ethan A Merritt
چکیده

We have determined the crystal structures of three homologous proteins from the pathogenic protozoans Leishmania donovani, Leishmania major, and Trypanosoma cruzi. We propose that these proteins represent a new subfamily within the isochorismatase superfamily (CDD classification cd004310). Their overall fold and key active site residues are structurally homologous both to the biochemically well-characterized N-carbamoylsarcosine-amidohydrolase, a cysteine hydrolase, and to the phenazine biosynthesis protein PHZD (isochorismase), an aspartyl hydrolase. All three proteins are annotated as mitochondrial-associated ribonuclease Mar1, based on a previous characterization of the homologous protein from L. tarentolae. This would constitute a new enzymatic activity for this structural superfamily, but this is not strongly supported by the observed structures. In these protozoan proteins, the extended active site is formed by inter-subunit association within a tetramer, which implies a distinct evolutionary history and substrate specificity from the previously characterized members of the isochorismatase superfamily. The characterization of the active site is supported crystallographically by the presence of an unidentified ligand bound at the active site cysteine of the T. cruzi structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural-functional studies of peptides derived from a long-chain snake neurotoxin Naja naja oxiana

Introduction: The design and structural characterization of mini-proteins with a compact, folded structure provide insight into the complex architecture of proteins today and has long been a challenging issue in structural- functional studies. Alpha neurotoxins from snake venom have a distinct folded structure comprised of a disulphide core and three loops or “fingers” each of these loops are c...

متن کامل

Functional Annotation of Two Hypothetical Proteins Reveals Valuable Proteins Involved in Response to Salinity: An in silico Approach

Through the exponential development in the specification of sequences and structures of proteins by genome sequencing and structural genomics approaches, there is a growing demand for valid bioinformatics methods to define these proteins function. In this study, our objective is to identify the function of unknown proteins from UCB-1 pistachio rootstock and specify their class...

متن کامل

Theoretical investigations on molecular structure, NBO, HOMO-LUMO and MEP analysis of two crystal structures of N-(2-benzoyl-phenyl) oxalyl: A DFT study

The N-(2-benzoyl-phenyl) oxalyl derivatives are important models for studying of three-centered intramolecular hydrogen bonding in organic molecules. The quantum theoretical calculations for two crystal structures of N-(2-benzoyl-phenyl) oxalyl (compounds I and II) were performed by Density Functional Theory (B3LYP method and 6-311+G* basis set). From the optimized structures, geometric paramet...

متن کامل

Structural and Sequence Analysis of Imelysin-Like Proteins Implicated in Bacterial Iron Uptake

Imelysin-like proteins define a superfamily of bacterial proteins that are likely involved in iron uptake. Members of this superfamily were previously thought to be peptidases and were included in the MEROPS family M75. We determined the first crystal structures of two remotely related, imelysin-like proteins. The Psychrobacter arcticus structure was determined at 2.15 Å resolution and contains...

متن کامل

Structural biology of Arf and Rab GTPases' effector recruitment and specificity.

Arf and Rab proteins, members of small GTPases superfamily, localize to specific subcellular compartments and regulate intracellular trafficking. To carry out their cellular functions, Arfs/Rabs interact with numerous and structurally diverse effector proteins. Over the years, a number of Arf/Rab:effector complexes have been crystallized and their structures reveal shared binding modes includin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 14 11  شماره 

صفحات  -

تاریخ انتشار 2005